平成24年春期試験問題 午前問1
広告
解説
相補演算とは、集合演算によって得られる結果が互いにもう一方の演算の補集合となっている関係、すなわちAとA,X AND YとNOT (X AND Y)のような関係になっているものをいいます。
排他的論理和(XOR)は、2つの入力値が異なれば真、同じであれば偽を返す論理演算で、演算結果は次のような真理値表となります。排他的論理和の相補演算になるのは、XORの補集合(XORのベン図の白い部分)が結果として得られる演算なので、答えとして適切なのは「等価演算」ということになります。
排他的論理和(XOR)は、2つの入力値が異なれば真、同じであれば偽を返す論理演算で、演算結果は次のような真理値表となります。排他的論理和の相補演算になるのは、XORの補集合(XORのベン図の白い部分)が結果として得られる演算なので、答えとして適切なのは「等価演算」ということになります。
広告