応用情報技術者平成21年春期 午前問1

問1

通信回線を使用したデータ伝送システムにM/M/1の待ち行列モデルを適用すると,平均回線待ち時間,平均伝送時間,回線利用率の関係は,次の式で表すことができる。
平均回線待ち時間=平均伝送時間×回線利用率1-回線利用率
回線利用率が0%から徐々に上がっていく場合,平均回線待ち時間が平均伝送時間よりも最初に長くなるのは,回線利用率が何%を超えたときか。
  • 40
  • 50
  • 60
  • 70
  • [出題歴]
  • 応用情報技術者 H25秋期 問5
  • 応用情報技術者 R1秋期 問3
  • ソフトウェア開発技術者 H19春期 問34

分類

テクノロジ系 » 基礎理論 » 応用数学

正解

解説

平均回線待ち時間が平均伝送時間より長くなるには、回線利用率1-回線利用率が1より大きくなることが条件です。

式の関係より、回線利用率が50%(0.5)のときに回線利用率1-回線利用率が1になり、50%よりも大きくなると1を超えて、平均回線待ち時間が平均伝送時間より長くなることがわかります。

したがって正解は50%です。
© 2010-2024 応用情報技術者試験ドットコム All Rights Reserved.

Pagetop